Introduction
Diabetic nephropathy (DN) is the common cause of mortality due to end stage of kidney failure. According to the International Diabetes Federation's Diabetes Atlas Report in 2015, more than 415 million people suffer from diabetes (1).

Up to 40% of the patients with type I and type II DM present diabetic kidney disease (2). Today early diagnosis of diabetic kidney disease is one of the most important aim of investigators. Biomarkers have a notable importance for the prediction, diagnosis and the therapeutic success of various diseases such as diabetic kidney disease (3). The best source of renal biomarkers are urine and serum, but urine is an ideal source of biomarkers, chiefly for renal diseases and urinary tract.

The most important urinary biomarkers for early diagnosis and progression of diabetic kidney disease that introduced by scientists are illustrated in Table 1.

At present, diagnosis of diabetic kidney disease in clinical settings relies upon the assessment of kidney function, usually by calculating estimated glomerular filtration rate (GFR), and the assessment of renal injury, usually by assessment of urinary albumin-to-creatinine ratio (14).

While albuminuria today remains the gold standard for diagnosing and categorizing diabetic kidney disease, however, it has many limitations. Urinary albumin excretion may also increase for reasons other than diabetic kidney disease such as physical activity, diet pattern, infection, fever, congestive heart failure, marked hyperglycemia, menstruation, and marked hypertension. Serum creatinine levels are also affected by the muscle mass and diet pattern especially meat intake, and therefore may interfere with the GFR calculation (14). Additionally, most recent studies fail to show that changes in microalbuminuria predict nephropathy progression, and there is a contentious, ongoing debate about the predictive value of microalbuminuria, and the relative importance of using microalbuminuria as a renal endpoint in clinical trials. This debate concentrates on three concerns, including (1) a large number of patients with microalbuminuria revert to normal albumin excretion, (2) only a small percentage of patients with microalbuminuria progress to proteinuria, and (3) progressive renal functional decline is already present in one-third of patients that progress into microalbuminuria (4).

However, unfortunately in diabetic kidney disease, kidney tubular damage develops over years before clinical and laboratory abnormalities like albuminuria, hypertension, or diminishing glomerular filtration rate appear (15), and waiting for clinical or laboratory manifestation of kidney disease before beginning treatment may hinder the attempts that prevent progression to end-stage kidney failure (16). Thus, tubular biomarkers seem to play an important role in the early diagnosis of diabetic kidney disease. In type 2 DM urinary NAG excretion increases proportionally to the duration of diabetes. It occurs much earlier than albuminuria. NAG can be considered as an early tubular biomarker (17). Urinary NAG is the most sensitive biomarker for detecting early damage in diabetic patients (18).

Although numerous investigators mentioned different types of biomarkers in diabetic kidney disease prediction, however all biomarkers have some limitations (14) in early detection of diabetic kidney disease and there are no enough clinical trials studies for validity of these biomarkers.

Conclusion
According to the limitation of biomarkers in early detection of diabetic kidney disease, it should be remembered that, no gold standard biomarker and technique in early detection and diagnosis of diabetic kidney disease was
Table 1. Urinary biomarkers in diabetic nephropathy

<table>
<thead>
<tr>
<th>Urinary biomarkers of DN</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markers of glomerular injury</td>
<td>Adiponectin, ceruloplasmin, laminin, transferrin, immunoglobulin G, glycosaminoglycans, lipocalin-type prostaglandin D synthase (L-PGDS), fibronectin, vascular endothelial growth factor/VEGF (4), type IV urinary collagen (5), podocyte number, podocyte-specific proteins (nephin, synaptopodin) (6).</td>
</tr>
<tr>
<td>Markers of tubular injury</td>
<td>Neutrophil gelatinase-associated lipocalin (NGAL) (7), N-acetyl-β-D-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), α1- and β2-microglobulin, liver-type fatty acid binding protein (L-FABP), retinal binding protein 4 (RP4), angiotensinogen, cystatin C (4).</td>
</tr>
<tr>
<td>Biomarkers of kidney fibrosis and inflammation</td>
<td>Collagen type IV, transforming growth factor-β, proinflammatory molecules, chemokines such as monocyte chemoattractant protein-1 (MCP-1), and cytokines such as tumor necrosis factor-α (TNF-α), tumor necrosis factor receptor-1 (TNFR1), interleukin-6 (IL-6), interleukin-18 (IL-18), IL8, IP10, C-SCF, EOTAXIN, RANTES, urinary orosomucoid and BMP7 (3), TGF-β1-to-BMP-7 ratio (8).</td>
</tr>
<tr>
<td>Biomarkers of oxidative stress</td>
<td>Urinary (IL-6, IL-8, MCP-1), interferon γ-inducible protein (IP-10), macrophage inflammatory protein-1, inositol pentakisphosphate 2 kinase (IPPK2K), zona occludens 3 (ZO-3), cadherin-like protein FAT tumor suppressor 2, three peptides that were decreased, including α1-IV and α1-V collagen and tenascin-C (10,11). Specific collagen fragments, β2-microglobulin, ubiquitin, proinflammatory cytokines, RP4, transthyretin, apolipoprotein A1, apolipoprotein C1, cystatin C (12).</td>
</tr>
<tr>
<td>Proteomics</td>
<td>Urinary (8-hydroxy-20-deoxyguanosine (8-OHdG), 8(F2a)-isoprostane, 4-hydroxy-2-nonenal, 3-nitrotyrosine peptides as well as AGES including carboxymethyl lysine and pentosidine, heart fatty acid binding protein (H-FABP), uRNAurinary advanced glycation products (UAGE) (3,9).</td>
</tr>
<tr>
<td>Micro RNA</td>
<td>miR-15b, miR-34a and miR-636 (13).</td>
</tr>
</tbody>
</table>

eXisted. Hence, large longitudinal cohort studies are still required to validate the abilities of the aforementioned novel early diagnosis and prediction techniques.

By reviewing of mechanisms involved in diabetic kidney disease pathogenesis (19), biomarkers and the fact that tubular injury in diabetic kidney disease take place years before changes of laboratories urinary and serum tests, theoretically may be said that sum of three biomarkers; urinary NAG (tubular biomarker), urinary AGES (pentosidine) and microalbuminuria with together are the best reliable biomarkers for early detection, diagnosis and treatment of diabetic kidney disease. This theory will be studied in future as clinical trial research for validating of these biomarkers in DN early detection.

Acknowledgments
The author wishes to thank from Rezvan Bagheri, Bardia and Barsin Tavafi.

Authors’ contribution
MT was the single author of the manuscript.

Conflicts of interest
The author declared no competing interests.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the author.

Funding/Support
None.

References